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1. INTRODUCTION

The free vibration of beams and rods carrying concentrated (lumped) or distributed mass
has been extensively investigated in detail for the last three decades. To have an idea about
the subject studied in the relevant literature one can refer to the papers listed at the end of
this work. Among the vast number of papers, the following can be mentioned. Chen [1] and
Goel [2] studied the eigenfrequencies of beams carrying a concentrated mass. Bhat and
Wagner [3], and Bhat and Kulkarni [4] obtained the natural frequencies of a cantilevered
beam with a slender tip mass. They showed that the gyroscopic e!ect of the tip mass on the
frequencies must be taken into account when its dimensions are considerable compared
with those of the carrying beam. Recently, Chan and Zhang [5] studied the free vibration of
a cantilever tube partially "lled with liquid, considering it as a beam with distributed mass.
Chan et al. [6], and Chan and Wang [7] investigated the free vibration of simply supported
and cantilever beams with distributed mass, using Euler}Bernoulli and Timoshenko beam
models respectively. Chan et al. [8] treated the free vibration of a beam with two distributed
masses in-span. Low [9] derived the frequency equations of a beam with a concentrated
mass in-span under classical boundary conditions. Cutchins [10], Batan and GuK rgoK ze [11]
dealt with the longitudinal vibrations of rods carrying a concentrated mass. GuK rgoK ze and
and I� nceogy lu [12] studied the axial vibration of an elastic rod with external distributed
mass.

However, it is observed in these works that a system consisting of a mass carried by two
di!erent beam segments has not been treated yet. In this paper, a method is presented to
obtain the natural frequencies of such a system as shown in Figure 1, due to its practical
importance. The general frequency equation derived in the context of this method can also
be used to "nd the eigenfrequencies of the beams either carrying or not carrying
a concentrated mass, and non-uniform, two part beams. However, one should remember
that the concept of rigidity is an idealization and a theoretical assumption which will not be
valid at higher frequencies any more. Therefore, in order to establish a more realistic model
for such a system, the intermediate mass must be considered a highly sti! portion of the
entire system instead of assuming it ideally rigid.

2. MATHEMATICAL MODEL

In the system shown in Figure 1, it is assumed that the mass carried by two beam
segments has a regular shape, symmetric with respect to its centre of gravity. The beam
segments generally may posses di!erent bending rigidity and density per unit length. In
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd.



Figure 1. Two-part beam}mass system.

Figure 2. The de#ected form of the two-part beam and the chosen co-ordinate systems.
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Figure 2, a situation that the system may assume is shown exaggerated. At this stage of the
study, the axial displacements are neglected because only the transversal vibrations are
dealt with. The equations of motion of two beam segments will be derived in two di!erent
co-ordinate systems to express the boundary conditions on the right support more easily.

The segment with length a is enumerated with 1 whilst the other that has length c, with 2.
In the x

�
y
�
-co-ordinate system, the equation of motion of beam 1 will be
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and that of beam 2 in x
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where �
�
, E
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,A

�
and I

�
(i"1, 2) are the density, Young modulus, the cross-sectional area and

area moment of inertia of each beam segment, respectively. The gyroscopic e!ect of the
beam cross-sections is not accounted for. The primes ( )� and the dots ( )z denote the
derivations with respect to x

�
or x

�
, and time respectively.

2.1. BOUNDARY AND MATCHING CONDITIONS

In the x
�
y
�
-co-ordinates the boundary conditions at the left end of beam 1 are

y
�
(0, t)"0, (3)

E
�
I
�
y��
�
(0, t)"0, (4)



372 LETTERS TO THE EDITOR
whilst those at the right end of beam 2 in the x
�
y
�
-co-ordinates are as follows:
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The total number of boundary conditions that beams 1 and 2 must satisfy at x
�
"a and

x
�
"c, respectively, is four. Two of them are the geometric boundary conditions and the

remaining two the natural ones. In fact, it will be more meaningful to call these boundary
conditions as matching or continuity conditions. These conditions are as follows:
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whereM and J denote the amount of mass and the mass moment of inertia of the in-span
attachment, respectively. Equations (7) and (8) are the geometrical matching conditions,
and guarantee the continuity of the system. The natural or dynamic matching conditions
given by equations (9) and (10) are, in fact, the equations of motion associated with the
transverse displacement and rotation of the mass. When desired, the factors of M and J in
equations (9) and (10) can be expressed in terms of the derivatives of y

�
.

2.2. SOLUTION OF EQUATIONS OF MOTION

Based on the method of separation of variables, if the solutions for equations (1) and (2)
are considered in the form
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and substituted into those equations, after necessary rearrangements one "nds
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From equation (13), one arrives at the following:
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Due to the existence of the relationship
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between��, k
�
, and k

�
, it is concluded that the solutions of equations (14) and (15) will be as

follows:
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From equations (3)}(6), one obtains
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Substituting >
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and >
�

with the remaining terms into equations (7}10) yields a set of
homogenous equations for B

�
, D

�
, B

�
and D

�
. It is obvious that the determinant of the

matrix of coe$cients must vanish in order that these equations have non-trivial solutions.
Equating the determinant to zero leads to the frequency equations of the system. Before
providing the elements of this determinant, the de"nition of some non-dimensional
parameters will be useful to generalize the results to be obtained. With
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these parameters are de"ned as follows:
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With the total mass of system segments
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the remaining non-dimensional parameters are introduced in the following manner:

�"

M

M
�

, �
�
"

�
�
A

�
a

M
�

, �
�
"

�
�
A

�
c

M
�

, (27}29)

	
�
"k

�
a, 	

�
"k

�
c, 
"

J

Mb�
. (30}32)

The elements of the (4�4) characteristic determinant d can be obtained using the
aforementioned parameters as follows:
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Then, the characteristic equation is given by
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To approximately obtain the fundamental frequency of the system studied here by
a di!erent way the mathematical expression of the de#ection curve related to the two-part
beam}mass model (TPBMM) was derived. Since the beam segments have di!erent
geometry and material, their slopes and de#ections are di!erent from each other. The slopes
and de#ections of beam segments 1 and 2 are shown by the symbols y�

�
, y�

�
, y
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and y

�
respectively. The slope and de#ection expressions of both segments are non-
dimensionalized in a suitable manner. With the non-dimensional slopes and de#ections yN �
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, the relationships used to non-dimensionalize them are as follows:

y�
�
"

G
�

¸�

E
�
I
�

yN �
�
, y

�
"

G
�

¸�

E
�
I
�

yN
�
, (35, 36)

y�
�
"

G
�

¸�

E
�
I
�

yN �
�
, y

�
"

G
�

¸�

E
�
I
�

yN
�
, (37, 38)

where G
�

denotes the total weight of the system. If the bending sti!nesses of the beam
segments are the same, the non-dimensionalizing factors also will be the same, R�
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and R�
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are the non-dimensional reaction forces at the left and right supports, which are obtained by
dividing the actual reactions by G
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, and they are as follows:
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The non-dimensional slope and de#ection functions were found as is given in the following:
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The non-dimensional de#ection of the mass M was obtained as follows:
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The relationship between the dimensional and non-dimensional de#ections of the mass y
�

and yN
�
is de"ned as
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Figure 3. Beam with concentrated mass.

Figure 4. The variation of the "rst frequency according to the BCMM and TPCMM with respect to � and �
�

respectively.**, BCMM; - - - -, TPBMM (�
�
"0)005); }} } -, TPBMM (�

�
"0)02); } ) } ) } ), TPBMM (�

�
"0)05).
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3. NUMERICAL RESULTS

To obtain the roots of the characteristic equation given by equation (34),
a MATLAB-code was written (although the roots of this equation are, in fact, the
eigenvalues of the system, we prefer to use the term frequency or eigenfrequency for
convenience, based on the relationship between these two entries). The mathematical model
established in this work allows one to "nd the bending eigenfrequencies of stepped beams
and shafts, beams of continuous cross-section, and beams carrying a concentrated mass.
For the purpose of comparison, another model was developed considering the physical
system shown in Figure 3. These two models will be brie#y denoted with the abbreviations
TPBMM (two-part beam}mass model) and BCMM (beam with concentrated mass model).

By means of the TPBMM, the e!ects of some non-dimensional parameters on the
frequencies were investigated. In what follows, the numerical results presented graphically
for di!erent cases will be interpreted and some comments will be made.

With � and b/¸ held constant, it was investigated how the "rst three frequencies vary with
respect to �

�
that can be considered as non-dimensional length of beam 1, or as the

connection point of massM. (The distance of the centre of gravity of the mass from the left
support might be utilized as a variable instead of �

�
. However, since �

�
seems to be more

meaningful and easy to imagine, it was preferred.) In Figures 4}6, the curves with solid line



Figure 5. The variation of the second frequency according to the BCMMand TPCMMwith respect to � and �
�

respectively.**, BCMM; - - - -, TPBMM (�
�
"0)005); }} } -, TPBMM (�

�
"0)02); } ) } ) } ), TPBMM (�

�
"0)05).

Figure 6. The variation of the third frequency according to the BCMM and TPCMM with respect to � and �
�

respectively.**, BCMM; - - - -, TPBMM (�
�
"0)005); }} } -, TPBMM (�

�
"0)02); } ) } ) } ), TPBMM (�

�
"0)05).
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are obtained from the BCMM. All these curves were obtained for �"0)5, �"�"1, and

"0. In the TPBMM, di!erent curves corresponding to di!erent values of b/¸ were
plotted. These values of b/¸ are 0)005, 0)02 and 0)05 respectively. The horizontal axis in the
"gures represents �

�
for the TPBMM, and � for the BCMM. To make a direct comparison

between the results of both models, the values 	
�
found from the TPBMM were divided by

�
�
. From these "gures, the following conclusions can be drawn.
The frequency curves related to the BCMM are always below those obtained from the

TPBMM.When the ratio b/¸ increases for a constant �, some increase in the mass of beam



Figure 7. The variation of the "rst frequency according to the BCMM and TPCMM with respect to �. - - - - ,
TPBMM (�

�
"0)50); **, BCMM (�"0)48); } ) } )}, BCMM (�"0)50).
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segments must be expected in order to keep � constant. Since �"�"1, this is possible if
only the beam cross-section gets larger. As a consequence, the beam segments become
sti!er, thus the frequencies have higher values.

Another remarkable point in these "gures is that the second and third frequency curves
have the extrema of certain numbers. The second frequency has one maximum, twominima,
while the third one has two maxima and three minima. These extrema correspond to
the nodes and anti-nodes of the associated modes [13]. The minima and maxima
approximately indicate the locations of anti-nodes and nodes respectively. Hence, the curve
of "rst frequency has just one anti-node, while the second has one node, two anti-nodes, and
the third one has two nodes, three anti-nodes. From this observation, it is easily concluded
that the system studied here has modes resembling those of a simply supported beam.

Figures 7}9 show how the "rst three frequencies vary with �
�

provided that �
�
, �

�
(moreover �

�
"�

�
) and thus b/¸"1!�

�
!�

�
are held constant. Furthermore, some

parameters for the TPBMM were chosen as �
�
"�

�
"0)48, b/¸"1!�

�
!�

�
"0)04,

�"�"1. In all "gures the dotted curves belong to the TPBMM whilst the dashed and
solid curves represent the results obtained from the BCMM for �"0)5 and 0)48
respectively. So two di!erent comparisons can be made using these "gures. The frequency
curves related to the BCMM for �"0)5 change similar to, but below those of the TPBMM.
Keeping the dimensions of the beam segments same, it is possible to alter � in the BCMM
contrary to the TPBMM in which changing � has an indirect e!ect on the beam
dimensions. Consequently, the sti!ness does not change in the BCMM even if � increases,
which causes a decrease in the "rst frequency, while the TPBMM has a higher frequency
value because an increase in � leads to a rise in the systems sti!ness, Figure 7. Although the
"rst frequency curves of the BCMM corresponding to �"0)50 and 0)48 are not
distinguishable in the graphics, the curve for �"0)50 goes below the curve for �"0)48.
This situation can be explained in the manner that the location of the mass M coincides
with an anti-node for �"0)50 and hence the system has more kinetic energy than the case
for �"0)48. When the second frequency curves are considered, it draws attention to the fact
that the curve of the TPBMM and that of the BCMM for �"0)50 appear not to be



Figure 8. The variation of the second frequency according to the BCMM and TPCMM with respect to �. - - - - ,
TPBMM (�

�
"0)50); **, BCMM (�"0)48); } ) } )}, BCMM (�"0)50).

Figure 9. The variation of the third frequency according to the BCMM and TPCMM with respect to �. - - - - ,
TPBMM (�

�
"0)50); **, BCMM (�"0)48); } ) } )}, BCMM (�"0)50).
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sensitive to the change in �. This also implies that the mass is located in the neighbourhood
of or on a node, for both models. From this observation, it is concluded that there is a node
in the middle of beam span in each system. In the same "gure, one sees that the second
frequency of the BCMM for �"0)48 varies with �, because in this case the mass is not on
a node. Moreover, the frequency decreases with increase in �. If the Rayleigh quotient is
recalled, this phenomenon will be easily understood. The reference kinetic energy in the
denominator of this quotient gets greater, which leads to a decrease in the second frequency.
In Figure 9, similar curves for the third frequency are plotted. The curve related to the



Figure 10. The second frequency versus � in case the mass is not located on a node.
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TPBMM again lies above those of the BCMM due to the aforementioned reasons.
Contrary to the second frequency, here, the curve of the BCMM for �"0)48 goes above
the curve for �"0)50. This can be explained by means of modes. In the case of �"0)50, the
mass is placed on the anti-node of the associated mode. Since the non-dimensional distance
�"0)48 is slightly far away from the anti-node, the reference kinetic energy corresponding
to �"0)50 is greater, and hence the frequency becomes smaller.

To check whether the explanation for the second frequency is reasonable, by taking
�
�
"0)6, �

�
"0)3, �"�"1 and 
"0, a new curve for the second frequency was obtained

from the TPBMM, and it was observed that the second one varies with �, when the mass
M is not on a node, Figure 10.

Figure 11 shows how the values of the "rst frequency obtained from the TPBMMand an
approximate formula similar to Dunkerley's formula change with respect to �. Here, the
location of the mass M does not alter, and according to the relationship
�
�
#(1!�

�
!�

�
)/2"0)6#(1!0)6!0)3)/2"0)65, it is at 0.65¸. In this approximate

method, the de#ection of the mass centre is obtained by equation (49), and the "rst
frequency is calculated by the formula �

�
:(g/y

�
)���. The di!erence between this formula

and Dunkerley's approximation is that, Dunkerley's method "nds two separate frequencies
based on the weights of beam and mass, then calculates the "rst frequency by using these
two. However, in the method used here, the weights of beam segments are included in the
calculation of the de#ection y

�
. In this approximate method, the numeric values of the

geometric and physical parameters were chosen as follows.
For the beam segments (assumed uniform and homogenous): E"2.1�10�� N/m�,

�"7850 kg/m�, ¸"1 m, a"0)6 m, b"0)1 m, c"0)3 m, D (beam diameters)"0)2 m.
In this example, the lengths of beam segments are kept constant, and � is altered by
increasing M.

In Figures 12 and 13, the variation of the "rst and second frequencies over �
�
is given for

di!erent values of �. Here, it was assumed that two beam segments are made from the same
material, and accordingly, it is taken that �"��. For both graphics �"0)5.

In Figure 12, it is observed that the "rst frequency rises as � increases. An increase in
� means a larger diameter of the beam segment 2. The minima of each of the three curves



Figure 11. The variation of the "rst frequency according to the BCMM and approximate method with respect
to �. **, TPBMM; - - - - -, approximate method.

Figure 12. The variation of the "rst frequency according to the TPBMM for di!erent values of �. - - - -, �"0)5;
**, �"1; } ) } ) }, �"1)5.
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correspond to the anti-node of the "rst mode for every �. For �"1)5, �
�
(0)5 the slimmer

segment 1 becomes shorter (in other words, the length of segment 2 increases), and thus the
system sti!ness increases along with higher � values. For this reason, the curve �"1)5 is
above that for �"1, and the last one is above the curve for �"0)5. When �

�
approaches 1,

it is observed that all the curves get closer. This is an expected consequence because the
contribution of segment 2 to the system sti!ness decreases. There is a similar situation for
the curves related to the second frequency shown in Figure 13.



Figure 13. The variation of the second frequency according to the TPBMM for di!erent values of �. - - - -,
�"0)5; **, �"1; } ) } ) }, �"1)5.

Figure 14. The variation of the second frequency according to the TPBMM with respect to �
�
for di!erent

values of 
. **, 
"0; - - - - -, 
"0)10; - - - - -, 
"0)16; } ) } ) }, 
"0)41.
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In Figures 14 and 15, the variations of the second and third frequencies with �
�
, including

the gyroscopic e!ect of the mass M, are shown. Note that �"0)5, b/¸"0)02 for these
curves. The smaller the value of 
, the higher are the frequencies. Since the curves of the "rst
frequency for di!erent 
's appear as if they are coincident within the scale of graphics, it is
not given here. With increasing order of the frequencies the variation with 
 becomes more
distinguishable. This observation is in good agreement with classical vibration theory,
which states that the gyroscopic e!ect is dominant at higher frequencies. From these last



Figure 15. The variation of the third frequency according to the TPBMMwith respect to �
�
for di!erent values

of 
. **, 
"0; - - - - -, 
"0)10; } } }, 
"0)16; } ) } ) }, 
"0)41.
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analyses one sees that 
 does not in#uence the "rst three frequencies. Consequently, it is
understood that taking 
"0 for other case studies is reasonable.

4. CONCLUSIONS

In this study, a mathematical model is presented to obtain the bending frequencies of
a system which consists of two beam segments carrying a mass of considerable dimensions.
This model allows one to investigate some special cases such as stepped beams and shafts,
uniform and homogenous beams, and beams carrying a concentrated mass. Since the mass
in the model forms a region with no #exibility on the system, this model is not suitable to
study elastic systems carrying distributed mass. In this model the material and geometric
properties of the beam segments can be controlled via the parameters � and �.

Another signi"cant point to mention is that the equation of motion and characteristic
equation are derived by using two di!erent co-ordinate systems. So, a useful model that
enables one to study stepped beams and shafts, is established. That the equation of the
elastic curve related to this system was derived in a non-dimensional form is among the
original contributions of this work.
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